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1. Introduction

Rough set theory was proposed by Pawlak[28-30], is an extension of the classical set theory and could
be regarded as a mathematical and soft computing tool to handle imprecision, vagueness and uncertainty
in data analysis. This relatively new soft computing methodology has received great attention in recent
years, and its effectiveness has been confirmed successful applications in many science and engineering
fields, such as pattern recognition, data mining, image processing, medical diagnosis and so on[18,19].
Rough set theory is built on the basis of the classification mechanism, it is classified as the equivalence
relation in a specific universe, and the equivalence relation constitutes a partition of the universe. A
concept or more precisely the extension of a concept is represented by a subset of a universe of objects
and is approximated by a pair of definable concepts of a logic language. The main idea of rough set
theory is the use of a known knowledge in knowledge base to approximate the inaccurate and uncertain
knowledge. It seems to be fundamental importance to artificial intelligence and cognitive sciences. The
classical rough set is through the indiscernibility relation obtained equivalence classes and construct
the lower and upper approximations. In many application fields the preference-ordered relation play
an important role. To solve this problem, Greco et al. have proposed an extension of Pawlak’s rough
set approach, which is called the Dominance-based rough set approach(DRSA)[11-15]. In DRSA, where
condition attributes are criteria and classes and the dominance classes are sets of objects defined by using
a dominance relation[4, 41].

In real-world application, data in information system are generated and collected dynamically, and
the knowledge discovery by RST need to be updating accordingly[32]. The incremental technique
is an effective method to updating knowledge by dealing with the new added-in data set without re-
implementing the original data mining algorithm[26]. With respect to the different angles to recognize
the dynamics in rough sets, there exist two main viewpoints. The first one is based on the view of in-
formation table. Since an information table consists of data objects, data attributes and data attribute
values[25] recent researches focus on the three types of variations, namely, variation of objects[1,6,20-
23,42], variation of attributes[24, 44], variation of attributes’ values[5]. The second one is based on the
view of pre-topology[31]. The classification of dynamics in rough sets is divided into two aspects: syn-
chronic dynamics and diachronic dynamics[7]. Furthermore, Ciucci[9] listed four main streamlines to
investigate dynamics in rough sets, namely, lower and upper approximations[3, 42], reduce and rules[8],
quality indexes[16, 20] and formal logical[17, 27]. To sum up, both viewpoints provide a basic and
clear framework on dynamic studies of rough sets. Shan and Ziarko presented a discernibility-matrix
based incremental methodology to find all maximally generalized rules. Bang and Bien proposed an-
other incremental inductive learning algorithm to find a minimal set of rules for a decision table without
recomputing all the set of instances when another instance set is added into the universe [1]. Tong and
An developed an algorithm based on the ϑ−decision matrix for incremental learning rules. They listed
seven cases that would happen when a new sample enters the system. Zheng and Wang developed a
rough set and rule tree based incremental knowledge acquisition algorithm, RRIA, to update knowledge
more quickly when new objects are added or removed from a given dataset[44]. Hu et al. constructed
a novel incremental attribute reduction algorithm when new objects are added into a decision informa-
tion system. Błaszczyński and Słowiński discussed the incremental induction of decision rules from
dominance-based rough approximations to select the most interesting representatives in the final set of
rules. Fan et al. proposed an approach of incremental rule induction based on rough sets[10]. In addition,
Liu et al. proposed an incremental approach as well as its algorithm for inducing interesting knowledge
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when objects change over time [20]. Then, Liu et al. further introduced the incremental matrix and
presented a new optimization approach for knowledge discovery[21]. Followed by Lius work, Li et
al. proposed an incremental approach for updating approximations in dominance-based rough sets[23].
Zhang et al. proposed a method for dynamic data mining based on neighborhood rough sets[42], and
they further presented a parallel method for computing rough set approximations [43]. As an efficient
data analysis’ technique, the rough set based incremental approaches have become one the hot topics on
extraction of knowledge from changing data sets in recent decades and have achieved fruitful results.

However, mainly study on incremental computing approximations concerned in the certainly single-
valued or set-valued information system, but little attention has been paid to the interval-valued infor-
mation system and ordered information system. And they are very important type of data tables, and
generalized models of single-valued information system. Xu and Qian et al. have did some studies
in ordered information system[34-38]. In recent years, some problems of decision making have been
investigated in the context of interval information system . Qian et al. introduced a dominance rela-
tion to interval information systems and interval decision tables and established a rough set approach
based on dominance relation for decision-making analysis in the context of interval value[33]. Yang et
al. investigated the interval-valued information system based on dominance relation[39, 40]. The upper
and lower approximations are fundamental of studying in rough set theory. In this paper, we investigate
the incremental approaches for updating approximations with dynamic object set in interval-valued or-
dered information system. We focus on updating approximations under the variation of the object set in
interval-valued ordered information system. We proposed two incremental updating algorithms when the
objectees are deleted or inserted, respectively. At last, the performances of two incremental algorithms
are evaluated on serval variety of data sets.

The remainder of this paper is organized as follows. In Section 2, some basic concepts of RST
and interval-valued ordered information systems are simply introduced. In Section 3, the principles and
some illustrated examples for incremental updating approximations with the variation of object set are
presented. We proposed the incremental algorithms for computing approximations based on the updating
principles in Section 4. In Section 5, performance evaluations are illustrated and the experiment results
have exhibited. The paper ends with conclusions shown in Section 6.

2. Rough sets and interval-valued ordered information system

In this section, Some basic concepts and results of rough sets are outlined and we introduce a dominance
relation to an interval information system, the rough set model of interval information system and some
of their important properties were introduced. More details can refer to Literature [11-15,28,29,33,40].

For a non-empty set U , we call it the universe of discourse. The class of all subsets of U is denoted
by P (U). For X ∈ P (U), the equivalence relation R in a Pawlak approximation space (U,R) partitions
the universe U into disjoint subsets. Such a partition of the universe is a quotient set of U and is denoted
by U/R = {[x]R|x ∈ U}, where [x]R = {y ∈ U |(x, y) ∈ R} is the equivalence class containing x with
respect to R. In the view of granular computing, equivalence classes are the basic building blocks for
the representation and approximation of any subset of the universe of discourse. Each equivalence class
may be viewed as a granule consisting of indistinguishable elements. The basic concept X ∈ P (U), one
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can characterize X by a pair of upper and lower approximations which are

R(X) = {x ∈ U |[x]R ∩X 6= ∅},
R(X) = {x ∈ U |[x]R ⊆ X}.

Here, pos(X) = R(X), neg(X) =∼ R(X), bn(X) = R(X)−R(X) are called the positive region,
negative region, and boundary region of X , respectively.

Pawlak upper and lower approximations divided the universe into three disjoint regions, namely, pos-
itive region, negative region and boundary region. These regions have qualitative semantics and reflect
the positive certainty, negative certainty and uncertainty, respectively. While the Pawlak rough set has a
severe limitation. The relationship between equivalence classes and the basic set are strict that there are
no fault tolerance mechanisms. Quantitative information about the degree of overlap of the equivalence
classes and the basic set is not taken into consideration. Therefore, neither wider relationships nor quan-
titative information can be utilized. In fact, there are some degrees of inclusion relations between sets,
and the extent of overlap of sets is important information to consider in applications. The classical rough
set model must be improved and expansions of the model that include quantification are of particular
value.

An interval-valued information system is a quadruple I = (U,AT, V, f), where U is a finite non-
empty set of objects and AT is a finite non-empty set of attributes, v = ∪a∈AT∨a and ∨a is a domain of
attribute a, f : U ×AT → V is a total function such that f(x, a) ∈ Va for every a ∈ AT ,x ∈ U , called
an information function, where Va is a set of interval numbers. Denoted by

f(x, a) = [aL(x), aU (x)] = {p|aL(x) ≤ aU (x), aL(x), aU (x) ∈ R},

we call it the interval number x under the attribute a. In particular, f(x, a) would degenerate into a real
number if aL(x) = aU (x).Under this consideration, we regard a single-valued information system as a
special form of interval information system.

In particular decision-making analysis, we always consider a binary dominance relation between
objects that are possibly dominant in terms of value of an attribute set in an interval information system.
In general, an increasing preference and a decreasing preference are considered by a decision maker. If
the domain of an attribute is ordered according to a decreasing or increasing preference, then the attribute
is a criterion.

An interval-valued information system is called interval-valued ordered information system if all
attributes are criterions, referred to as IvOIS. It is assumed that the domain of a criterion a ∈ AT is
completely pre-ordered by an outranking relation ≥a and x ≥a y means that x is at least as good as y
with respect to the criterion a. For a subset of attribute A ⊆ AT , we define x ≥a y ⇔ ∀a ∈ A, x ≥a y.
In other words, x is at least as good as y with respect to all attributes in A. In the following, we introduce
a dominance relation that identifies dominance classes to an interval-valued ordered information system.
In a given IvOIS, we say that x dominates y with respect to A ⊆ AT if x ≥A y, and denoted by xR≥Ay.
That is

R≥A = {(y, x) ∈ U × U |y ≥A x}.

It means that if (x, y) ∈ R≥A , then y dominates x with respect to A. In other words, y may have a
better property than x with respect toA in reality. In the similar way, the relationR≤A (called a dominated
relation)can be defined as follows:

R≤A = {(y, x) ∈ U × U |x ≥A y}.
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For A ⊂ AT and A = A1 ∪ A2, if the attributes set A1 according to increasing preference and
A2 according to decreasing preference, then the two binary relations can be defined more precisely as
follows:

R≥A = {(y, x) ∈ U × U |aL1 (y) ≥ aL1 (x), aU1 (y) ≥ aU1 (x), ∀a1 ∈ A1;

aL2 (y) ≤ aL2 (x), aU2 (y) ≤ aU2 (x),∀a2 ∈ A2; }
= {(y, x) ∈ U × U |(y, x) ∈ R≥A}.

R≤A = {(y, x) ∈ U × U |aL1 (y) ≤ aL1 (x), aU1 (y) ≤ aU1 (x), ∀a1 ∈ A1;

aL2 (y) ≥ aL2 (x), aU2 (y) ≥ aU2 (x),∀a2 ∈ A2; }
= {(y, x) ∈ U × U |(y, x) ∈ R≤A}.

Let I≥ = (U,AT, V, f) be an interval-valued ordered information system and A ⊂ AT , from the above
definition of R≥A and R≤A , the following properties can be easily obtained.

R≥A =
⋂
a∈A

R≥{a} , R≤A =
⋂
a∈A

R≤{a}.

And R≥A , R≤A are reflexive, R≥A , R≤A are asymmetric and R≥A , R≤A are transitive.
The dominance class induced by the dominance relation R≥A is the set of objects dominating x, i.e.

[x]≥A = {aL1 (y) ≥ aL1 (x), aU1 (y) ≥ aU1 (x)∀a1 ∈ A1; a
L
2 (y) ≤ aL2 (x), aU2 (y) ≤ aU2 (x), ∀a2 ∈ A2},

and the set of objects dominated by x as follows.

[x]≤A = {aL1 (y) ≤ aL1 (x), aU1 (y) ≤ aU1 (x)∀a1 ∈ A1; a
L
2 (y) ≥ aL2 (x), aU2 (y) ≥ aU2 (x), ∀a2 ∈ A2}.

Where [x]≥A describes the set of objects that may dominates x and [x]≤A describes the set of objects
that may dominated by x in terms of A in an interval-valued ordered information system, which are
called the A-dominating set and the A-dominated set with respect to x ∈ U , respectively.

In many real application regions, one also can define the dominance relation on the universe with
interval values through using others, the more details can be found in reference. Furthermore, no matter
which dominance relation can be obtained similar to any one what have been investigated. Therefore, we
just only adopt the dominance relation R≥A for studying interval-valued ordered information system in
this paper. For simplicity and without any loss of generality, in the following we only consider attributes
with increasing preference.

Example 2.1. An interval-valued ordered information system is presented in Table 1. It is a case of the
diagnosis of myocardial infarction, whereU = {x1, x2, · · · , x10} representatives of ten different patients
and AT = {a1, a2, · · · , a5} representatives of several enzymes related to the diagnosis of myocardial
infarction. Where a1 represents aspartate amino transferase(AST), a2 represents Lactate dehydrogenase
(LDH) and isoenzyme, a3 represents Alfa hydroxybutyrate dehydrogenase(α−HBDH) , a4 represents
Creatine Kinase(CK), a5 represents Creatine Kinase isoenzymes(CKMB). Compute the classification
induced by the dominance relation R≥AT . And the different decision attribute values mean different
diagnosis results.
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From the Table 1, using the above property can be obtained that

[x1]
≥
AT = {x1, x5, x7, x8}, [x2]

≥
AT = {x2, x7, x9}, [x3]

≥
AT = {x3, x9},

[x4]
≥
AT = {x1, x3, x4, x5, x6, x7, x8, x9}, [x5]≥AT = {x5}, [x6]

≥
AT = {x6, x8, x9},

[x7]
≥
AT = {x7}, [x8]

≥
AT = {x8}, [x9]

≥
AT = {x9}, [x10]

≥
AT = {x7, x8, x9, x10}.

So we can find that dominance classes in U/R≥AT do not constitute a partition of U in general, but
constitute a covering of U .

Table 1. An interval-valued ordered information system.

U AST LDH α−HBDH CK CKMB d

x1 [10,40] [100,240] [105,195] [5 ,195] [0 ,24] 2
x2 [10,30] [80 ,210] [80 ,180] [10,190] [0 ,24] 1
x3 [12,45] [105,248] [100,210] [7 ,203] [0 ,23] 2
x4 [5 ,30] [60 ,80 ] [90 ,160] [0 ,180] [0 ,10] 1
x5 [10,46] [110,246] [105,195] [6 ,198] [0 ,26] 2
x6 [10,30] [90 ,200] [96 ,206] [5 ,195] [3 ,24] 2
x7 [13,60] [100,240] [115,200] [20,260] [5 ,30] 3
x8 [10,50] [120,260] [115,210] [8 , 196] [5 ,28] 2
x9 [16,80] [140,260] [102,300] [40, 320] [10,60] 3
x10 [8 ,32] [60 ,196] [80 ,178] [6 , 160] [2 ,20] 1

Based on the above set, approximations will be considered with respect to a dominance relation R≥A
in an interval-valued ordered information system . The original rough set approach proved to be very
useful in dealing with inconsistency problems following from the information granulation. The original
rough set idea is failing, however ,when preference-orders of attributes domains are to be taken into
account [2].

Let I≥ = (U,AT, V, f) be an interval-valued ordered information system. For any X ⊆ U and
A ⊆ AT , the lower and upper approximations of X with respect to a dominance relation R≥A are defined
as follows:

R≥A(X) = ∪{[x]≥A | [x]≥A ⊆ X},

R≥A(X) = ∪{[x]≥A | [x]≥A ∩X 6= ∅}.

From the definition, one can easily notice that R≥A(X) is a set of objects that belong to X with certainty

and R≥A(X) is a set of objects that possibly belong to X . It is similarly to Pawlak rough set that the

BnA(X) = R≥A(X)−R≥A(X) denotes a boundary of the rough set. Moreover, one can easily obtain the
following properties.

Let I≥ = (U,AT, V, f) be an interval-valued ordered information system. For X,Y ⊆ U , A ⊆ AT
and R≥A a dominance relation, then following properties hold.

(1) R≥A(∅) = R≥A(∅) = ∅, R≥A(U) = R≥A(U) = U ;
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(2) R≥A(X) ⊆ X ⊆ R≥A(X);

(3) R≥A(R≥A(X)) = R≥A(X), R≥A(R≥A(X)) = R≥A(X);

(4) R≥A(X) =∼ R≥A(∼ X), R≥A(X) =∼ R≥A(∼ X);

(5) R≥A(X) ⊆ R≥AT (X), R≥A(X) ⊇ R≥AT (X), and BnAT (X) ⊆ BnA(X);

(6) If X ⊆ Y , then R≥A(X) ⊆ R≥A(Y ), R≥A(X) ⊆ R≥A(Y );

(7) R≥A(X ∩ Y ) = R≥A(X) ∩R≥A(Y ), R≥A(X ∪ Y ) = R≥A(X) ∪R≥A(Y );

(8) R≥A(X ∪ Y ) ⊇ R≥A(X) ∪R≥A(Y ), R≥A(X ∩ Y ) ⊆ R≥A(X) ∩R≥A(Y ).
The lower and upper approximations of X with respect to the dominance relation RA ≥ can be used

to extract dominance rules by a decision maker, where one can extract dominance rules with certainty by
using R≥A and can extract possible dominance rules by using BnA(X) = R≥A(X)−R≥A(X).

Example 2.2. (Continued from Example2.1). Consider the interval-valued ordered information
system as Table 1. Let A = {a1, a2, · · · , a5} = AT and an object set X = D2 = {x1, x3, x5, x6, x8},
compute the rough sets of D2 approximated by U/R≥AT . According to the definition of approximations

and Example 2.1, the rough set R≥A(D2) and R≥A(D2) can be obtained as follows.

R≥A(D2) = {x5, x8}, R≥A(D2) = {x1, x3, x4, x5, x6, x7, x8, x9}.

So the boundary of the rough set is BnA(D2) = {x1, x3, x4, x6, x7, x9}.

3. Theories for incremental updating approximations in an IvOIS under
the variation of objects

With the dynamic object set of interval-valued ordered information system, the structure of information
granules in the information system may over time which leads to the change of knowledge induced
by RST. In medical diagnosis the data does not usually remain a stable condition. Some objects will
be deleted from the original information system with the patient’s cure or changing hospital and some
objects will be inserted into the original information system with new patients arrive. So it is in other
areas of science. Then the discovered knowledge may become invalid or some new implicit information
may emerge in the whole updated information system. Rather than restarting from scratch by non-
incremental or batch learning algorithm for each update, developing an efficient incremental algorithm
to avoid unnecessary computations by utilizing the previous data structures or results are thus desired.

In this section, we investigate the variation of approximations of the dynamic IvOIS when the object
set evolves over time while the attribute set remains constant. We assume the process for incremental
update the approximations lasts two stages, namely, from time t to time t + 1. By considering the
objects may enter into or get out of an information system at time t + 1 and we denote a dynamic
IvOIS at time t as I≥ = (U,AT ∪ {d}, V, f), and at time t + 1 the original information system change
into (I≥)

′
= (U

′
, AT ∪ {d}, V ′ , f) after insertion or deletion of objects. And we denote the decision

classes and the A − dominating set as Di and [x]≥A, respectively at time t, which are denoted as D
′
i

and ([x]≥A)
′

respectively at time t + 1. The lower and upper approximations of decision class Di with
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respect to A ⊆ AT are denoted as R≥A(Di) and R≥A(Di), respectively at time t, which are denoted as

R≥A(Di)
′

andR≥A(Di)
′
, respectively at time t+1. Here, we only investigate the incremental approach for

updating approximations in the cases that a single object enter and get out of the interval-valued ordered
information system. The change of multiple objects can be seen as the cumulative change of a single
object. The approximations can be updated step by step through the updating principles in the case that
a single object varies.

3.1. Theories for Incremental Computing Approximations with the Deletion of an Object
in an IvOIS

Given an IvOIS I≥ = (U,AT ∪ {d}, V, f) at time t, the deletion of object x− ∈ U will change the
original information system and information granules [x]≥A(x ∈ U and A ⊆ AT ) and the equivalence
decision classes Di(i ∈ {1, · · · , r}). The approximations of Di will change accordingly. Here, we
investigate the principles for updating approximations of Di as two cases:(1) The deleted object x−

belongs to Di. (2)The deleted object x− does not belongs to Di.

Case 1. The deleted object x− belongs to Di, namely, x− ∈ Di.

Proposition 3.1. Let I≥ = (U,AT ∪ {d}, V, f) be an IvOIS and any A ⊆ AT . When x− ∈ Di(i ∈
{1, · · · , r}) is deleted from U , we have the following properties about R≥A(Di)

′
and R≥A(Di)

′
.

(1) If x− ∈ R≥A(Di), then R≥A(Di)
′

= R≥A(Di)− {x−}. Otherwise R≥A(Di)
′

= R≥A(Di).

(2)R≥A(Di)
′

= (R≥A(Di)−[x−]≥A)∪∆−1 , where ∆−1 = {x|x ∈ [x−]≥A∩∆−2 } and ∆−2 = ∪x∈Di−{x−}[x]≥A.

Proof:
(1) If x− ∈ Di is deleted from the universe U , we have U

′
= U − {x−} and D

′
i = Di − {x−}. So

for any x ∈ U ′ , we have ([x]≥A)
′

= [x]≥A − {x−}. If [x]≥A ⊆ Di, then ([x]≥A)
′ ⊆ D

′
i. It’s similar that if

[x]≥A not ⊆ Di then ([x]≥A)
′

not ⊆ D
′
i. So, from the definition of lower and upper approximations, we

can get that for any x ∈ U ′ , if x ∈ R≥A(Di), then x ∈ R≥A(Di)
′

and if x /∈ R≥A(Di) then x /∈ R≥A(Di)
′
.

Hence, it is easy to obtain if x− ∈ R≥A(Di), then R≥A(Di)
′

= R≥A(Di) − {x−}. Otherwise, the lower

approximation of Di should be remain constant, i.e. R≥A(Di)
′

= R≥A(Di).

(2)According to the definition, we have the R≥A(Di) = ∪{[x]≥A|[x]≥A ∩ Di 6= ∅}. Thus when the
object x− ∈ Di is deleted from U , the A−dominating set [x−]≥A should be removed from the upper

approximationR≥A(Di). It’s meanR≥A(Di)
′

= R≥A(Di)−[x−]≥A. However, it may be exist x ∈ Di−{x−}
satisfies that ∆−1 = [x]≥A ∩ [x]≥A 6= ∅ and the object which x ∈ [x

′
]≥A ,where x

′ ∈ (Di − {x−}) should

not be removed from R≥A(Di). Therefore, we can obtain R≥A(Di)
′

= (R≥A(Di) − [x−]≥A) ∪∆−1 , where
∆−1 = {x|x ∈ [x−]≥A ∩∆−2 and ∆−2 = ∪x∈Di−{x−}[x]≥A.

Thus, the Proposition 3.1 is proved. ut

Example 3.1. (Continued fromExample2.2). For Table 1, according to Proposition 3.1, we compute
the lower approximation of D2 by deleting x3 and x5 , the upper approximation by deleting x6 from U ,
where D2 = {x1, x3, x5, x6, x8}, respectively.
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(1) Assume the object x3 be deleted from Table 1, so U
′

= U − {x3}. We can find the x3 ∈ D2

but x3 /∈ R≥A(D2). Therefore, R≥A(D2)
′

= {x5, x8}. Let the object x5 be deleted from Table 1, so

U
′

= U −{x5}. We have x5 ∈ D2 and x5 ∈ R≥A(D2). Therefore, R≥A(D2)
′

= R≥A(D2)−{x5} = {x8}
(2)Let the object x6 be deleted from Table 1, so U

′
= U − {x6}. We have x6 ∈ D2, ∆−2 =

{x1, x3, x5, x7, x8, x9}. Then ∆−1 = {x8, x9} andR≥A(D2)
′

= (R≥A(D2)−[x6]
≥
A)∪∆−1 = {x1, x3, x4, x5,

x7, x8, x9}.
Case2. The deleted object x− does not belongs to Di,namely x− /∈ Di.

Proposition 3.2. Let I≥ = (U,AT ∪ {d}, V, f) be an IvOIS and any A ⊆ AT . When x− /∈ Di(i ∈
{1, · · · , r}) be deleted from U , we have the following properties about R≥A(Di)

′
and R≥A(Di)

′
.

(1) R≥A(Di)
′

= R≥A(Di) ∪ ∆−1 . Where ∆−1 = {x|x ∈ (Di − R≥A(Di)), ([x]≥A)
′ ⊆ D}, if x− ∈ [x]≥A

then ([x]≥A)
′

= [x]≥A − {x−} otherwise ([x]≥A)
′

= [x]≥A.

(2) If x− ∈ R≥A(Di) then R≥A(Di)
′

= R≥A(Di)− {x−}. Otherwise R≥A(Di)
′

= R≥A(Di).

Proof:
(1) Based on definition, we have for any x ∈ Di, if x ∈ R≥A(Di) then [x]≥A ⊆ Di. When the object

x− /∈ Di is deleted from the universe U , we have that U
′

= U − {x−} and D
′
i = Di. So, ∀x ∈ U ′ ,

([x]≥A)
′

= [x]≥A−{x−}. It is easy to get that if [x]≥A ⊆ Di then ([x]≥A)
′ ⊆ D′i. Thus, for ∀x ∈ R≥A(Di)⇒

x ∈ R≥A(Di)
′
. On the other hand, for ∀x ∈ Di − R≥A(Di), we can get [x]≥A ⊆ Di. However, it may

exist x− ∈ [x]≥A such that ([x]≥A)
′ ⊆ Di after the deletion of x− . Then the x should be added to

R≥A(Di)
′
, namely, R≥A(Di)

′
= R≥A(Di) ∪ {x}. Therefore, we have R≥A(Di)

′
= R≥A(Di) ∪∆−1 , where

∆−1 = {x|x ∈ Di −R≥A(Di), ([x]≥A)
′ ⊆ Di}, ([x]≥A)

′
= [x]≥A − {x−}.

(2) According to definition, we have R≥A(Di) = ∪{[x]≥A|[x]≥A ∩Di 6= ∅}. Since the deleted object

x− /∈ Di, there exists an object x ∈ Di stratifies x− ∈ [x]≥A, if x− ∈ R≥A(Di). Therefore, when the object

x− is deleted, we can get ([x]≥A)
′

= [x]≥A − {x−}. Then R≥A(Di)
′

= ∪x∈Di([x]≥A)
′

= R≥A(Di)− {x−}.
On the other hand, if x− /∈ R≥A(Di), we have ∀x ∈ Di, x− /∈ [x]≥A. Hence, the upper approximation of

Di will remain constant, namely, R≥A(Di)
′

= R≥A(Di).
Thus, the proof is fulfilled. ut

Example 3.2. (Continued fromExample2.2). For Table 1, according to Proposition 3.2, we compute
the lower approximation of D2 by deleting x10 from U , the upper approximation of D2 by deleting x9
and x10 from U .

(1)Assume the object x10 be deleted from Table 1, so U
′

= U − {x10}. We have x10 /∈ D2,
D2 − R≥A(D2) = {x1, x3, x6}, and ([x1]

≥
A)
′
, ([x3]

≥
A)
′
, ([x6]

≥
A)
′

not ⊆ D2. Therefore, ∆−1 = ∅ and

R≥A(D2)
′

= R≥A(D2) ∪∆−1 = {x5, x8}.
(2)If the object x9 be deleted from Table 1, then U

′
= U − {x9}. We have x9 /∈ D2 but x9 ∈

R≥A(D2). Therefore, R≥A(D2)
′

= R≥A(D2) − {x9} = {x1, x3, x4, x5, x6, x7, x8}. Let the object x10
be deleted from Table 1, so U

′
= U − {x10}. We have x10 /∈ D2 and x10 /∈ R≥A(D2). Therefore,

R≥A(D2)
′

= R≥A(D2) = {x1, x3, x4, x5, x6, x7, x8, x9}.
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3.2. Theories for Incremental Computing Approximations with the Insertion of a New
Object in an IvOIS

Given an interval-valued ordered information system(IvOIS) I≥ = (U,AT ∪ {d}, V, f) at time t, when
the information system is updated by inserting a new object x+ into the universe U at time t + 1,
where denotes the inserted object as x+. There are two situations may occur: (1) x+ forms a new
decision class, namely, for any x ∈ U , f(x, d) 6= f(x+, d); (2) x+ does not forms a new decision
class, namely, exist x ∈ U , f(x, d) = f(x+, d). The different between the two situation is, in the first
situation, in addition to updating the approximations of the equivalence classes, we need to compute the
approximations for the new decision class. Firstly, for updating the approximations of the equivalence
classes Di where i ∈ {1, · · · , r} when inserting an object x+, we investigate the principles through two
cases similar to the approach taken in the model of deletion: (1) The inserted object x+ will belong to
Di, it’s mean f(x, d) = f(x+, d), where x ∈ Di; (2) The inserted object x+ will not belong to Di,
namely, f(x, d) 6= f(x+, d), for any x ∈ Di,i ∈ {1, · · · , r}.

To illustrate our incremental methods for updating approximations when inserting a new object x+

into interval-valued ordered information system(IvOIS). We assume that the objects in Table 2 will be
inserted into Table 1, the Table 2 are given as follows.

Table 2. The object inserted into the interval information system

U AST LDH α−HBDH CK CKMB d

x11 [10, 50] [110, 250] [115, 210] [8, 195] [5, 27] 2
x12 [12, 45] [105, 248] [100, 210] [7, 203] [0, 23] 2
x13 [10, 30] [90, 200] [96, 206] [5, 195] [3, 24] 2
x14 [5, 30] [60, 80] [90, 160] [0, 180] [0, 10] 1
x15 [30, 100] [200, 600] [100, 600] [40, 800] [10, 60] 4

Case 1. The inserted object x+ will belong to Di, namely x+ ∈ Di, i ∈ {1, · · · , r}.

Proposition 3.3. Let I≥ = (U,AT ∪ {d}, V, f) be an IvOIS and any A ⊆ AT . When the object
x+ ∈ Di( i ∈ {1, · · · , r}) be inserted into U , we have the following properties about R≥A(Di)

′
and

R≥A(Di)
′
.

(1) If [x+]≥A ⊆ D
′
i,where D

′
i = Di∪{x+} then R≥A(Di)

′
= R≥A(Di)∪{x+}. Otherwise, R≥A(Di)

′
=

R≥A(Di).

(2) R≥A(Di)
′

= R≥A(Di) ∪ [x+]≥A.

Proof:
(1) According to definition, we have for any x ∈ Di, if [x]≥A ⊆ Di, then x ∈ R≥A(Di). Thus, when the

object x+ is inserted into U , we have D
′
i = Di ∪ {x+}. For any x ∈ Di, if x+ ∈ [x]≥A then ([x]≥A)

′
=

[x]≥A ∪ {x+}. That is, if [x]≥A ⊆ Di then ([x]≥A)
′ ⊆ D

′
i. If [x]≥A not ⊆ Di, then ([x]≥A)

′
not ⊆ D

′
i. It

follows that if x ∈ R≥A(Di), then x ∈ R≥A(Di)
′
. If x /∈ R≥A(Di), then x /∈ R≥A(Di)

′
. Therefore, if

[x]≥A ⊆ D
′
i, we have x+ ∈ R≥A(Di)

′
and R≥A(Di)

′
= R≥A(Di) ∪ {x+}. Otherwise, R≥A(Di)

′
= R≥A(Di).
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(2) When the object x+ be inserted into U that U
′

= U ∪ {x+}. According to definition, we have
R≥A(Di)

′
= ∪

x∈D′i
([x]≥A)

′
. SinceD

′
i = Di∪{x+}, then we haveR≥A(Di)

′
= R≥A(Di)

′∪[x+]≥A. Because

for ∀x ∈ U there ([x]≥A)
′

= [x]≥A ∪ {x+} or ([x]≥A)
′

= [x]≥A and the object x+ ∈ [x+]≥A, we can obtain

that R≥A(Di)
′

= ∪x∈Di+1 [x]≥A ∪ [x+]≥A = R≥A(Di) ∪ [x+]≥A.
Thus, the proof is finished. ut

Example 3.3. (Continued fromExample2.2). For Table 1, according to Proposition 3.3, we compute
the lower approximation of D2 when the objects x11 and x12 are inserted, the upper approximation of
D2 when the object X13 in Table 2 inserted into the universe U , respectively.

(1) Let the object x11 in Table 2 be inserted into Table 1, so the U
′

= U ∪{x11}. Since f(x11, d) = 2
thenD

′
2 = D2∪{x11}. Because of [x11]≥a = {x8, x11} ⊆ D

′
2, we haveR≥A(D2)

′
= R≥A(D2)∪{x11} =

{x5, x8, x11}. Assume the object x12 in Table 2 be inserted into Table 1 and U
′

= U ∪ {x12}. Since
f(x12, d) = 2 then D

′
2 = D2 ∪ {x12}. Because of [x12]

≥
A = {x3, x9, x12, x15} not ⊆ D

′
2 then we have

R≥A(D2)
′

= R≥A(D2) = {x5, x8}.
(2) Assume the object x13 in Table 2 be inserted into Table 1 and U

′
= U ∪{x13}. Since f(x13, d) =

2 then D
′
2 = D2 ∪ {x13} and R≥A(Di)

′
= R≥A(Di) ∪ [x13]

≥
A = {x1, x3, x4, x5, x6, x7, x8, x9, x13}.

Case 2. The inserted object x+ will not belong to Di, namely, x+ /∈ Di, i ∈ {1, · · · , r}.

Proposition 3.4. Let I≥ = (U,AT ∪ {d}, V, f) be an IvOIS and any A ⊆ AT . When the object
x+ /∈ Di (i ∈ {1, · · · , r}) be inserted into U , we have the following properties about R≥A(Di)

′
and

R≥A(Di)
′
.

(1) R≥A(Di)
′

= R≥A(Di) ∪∆+
1 , where ∆+

1 = {x|x ∈ R≥A(Di), x
+ ∈ ([x]≥A)

′}.

(2) If there exists x ∈ Di such that x+ ∈ [x]≥A, then R≥A(Di)
′

= R≥A(Di)∪{x+}. Otherwise R≥A(Di)
′

=

R≥A(Di).

Proof:
(1) When the object x+ be inserted into U , since f(x, d) = f(x+, d) (x ∈ Di) we have U

′
= U ∪{x+}

and D
′
i = Di. For ∀x ∈ D′i there ([x]≥A)

′
= [x]≥A or ([x]≥A)

′
= [x]≥A ∪ {x+}. We have if [x]≥A not ⊆ Di

then [x]≥A not ⊆ D
′
i. That is, if x /∈ R≥A(Di) then x /∈ R≥A(Di)

′
. Hence, we only consider the object

x+ ∈ R≥A(Di), namely, Di ⊆ [x]≥A. When the object x+ be inserted into universe U , there may exist that

([x]≥A)
′

= [x]≥A ∪ {x+} then ([x]≥A)
′

is not included by D
′
i = Di, namely, x /∈ R≥A(Di)

′
. Therefore, we

have R≥A(Di)
′

= R≥A(Di)−∆+
1 , where ∆+

1 = {x|x ∈ R≥A(Di), x
+ ∈ ([x]≥A)

′ }.
(2) When the object x+ is inserted into U , since f(x, d) 6= f(x+, d), we can obtain U

′
= U ∪{x+}

and D
′
i = Di. Then, for ∀x ∈ D

′
i, if x+ ∈ [x]≥A then ([x]≥A)

′
= [x]≥A ∪ {x+}. And we have x+ ∈

R≥A(Di)
′
, that is , R≥A(Di)

′
= R≥A(Di) ∪ {x+}. Otherwise, if for ∀x ∈ Di, x+ /∈ ([x]≥A)

′
, that is,

([x]≥A)
′

= [x]≥A. Then we can get R≥A(Di)
′

= R≥A(Di).
Thus, the proof is accomplished. ut

Example 3.4. (Continued fromExample2.2). For Table 1, according to Proposition 3.4, we compute
the lower and upper approximations of D2 when the object x14 in Table 2 into the universe U .
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(1)Assume the object x14 in Table 2 insert into Table 1, and U
′

= U ∪ {x14}. Since f(x14, d) = 1
then D

′
2 = D2 remain unchanged. Because of R≥A(D2) = {x5, x8}, and x14 /∈ ([x5]

≥
A)
′
, ([x8]

≥
A)
′
.

Hence, we have ∆+
1 = ∅ then ,R≥A(D2)

′
= R≥A(D2) = {x5, x8}.

(2) Let the object x14 in Table 2 insert into Table 1 and U
′

= U ∪ {x14}. Since f(x14, d) = 1, then
D
′
2 = D2 remain unchanged. Because of R≥A(D2) = {x1, x3, x5, x6, x7, x8, x9}, and x15 ∈ ([x2]

≥
A)
′
,

that is x15 ∈ ([x2]
≥
A)
′
. Hence, we have R≥A(D2)

′
= R≥A(D2)∪{x15} = {x1, x3, x5, x6, x7, x8, x9, x15}.

Based on above investigate, we can compute the lower and upper approximations of the existed
equivalence decision classes Di where i ∈ {1, · · · , r} when inserting a new object into IvOIS. However,
when a new object x+ is inserted into the universe U , it might happen that x+ will generate a new
decision class, namely, ∀x ∈ U , f(x, d) 6= f(x+, d). Then the universe U

′
= U ∪ {x+} will be divided

into r+ 1 partitions and Dr+1 = {x+}. At this point, in addition to updating the approximations of new
decision class Dr+1.

Proposition 3.5. Let I≥ = (U,AT ∪ {d}, V, f) be an IvOIS and any A ⊆ AT . When the object x+

be inserted into U , if for ∀x ∈ U , f(x, d) 6= f(x+, d), then the lower approximation of the new decision
class Dr+1 can be computed by definition be shown as follows.
(1) If there [x+] ⊆ Dr+1,where Dr+1 = {x+}, then R≥A(Dr+1) = [x+]≥A. Otherwise R≥A(Dr+1) = ∅.

(2) R≥A(Dr+1) = ∪{[x]≥A|x+ ∈ [x]≥A, x ∈ U}.

Proof:
It’s easy to prove according to the definition of approximations. ut

Example 3.5. (Continued fromExample2.2). For Table 1, according to Proposition 3.5, we compute
the lower and upper approximations of Dr+1 when the object x15 in Table 2 be inserted into the univ-
erse U .

(1) Assume the object x15 be inserted into universe U in Table 2 then U
′

= U ∪ {x15}. Since
for ∀x ∈ U , f(x, d) 6= f(x15, d) = 4 then U/d = {d1,··· ,Dr,dr+1} and Dr+1 = {x15}. Because of
[x]≥15 = {x15}, we have R≥A(Dr+1) = {x15}.

(2) Let the object x15 in Table 2 inserts into Table 1 and U
′

= U ∪ {x15}. Since for ∀x ∈ U ,
f(x, d) 6= f(x15, d) = 4, then U/d = {D1, · · · , Dr, Dr+1} and Dr+1 = {x15}. Because of [x]≥15 ⊆
[x2]

≥
A, [x3]

≥
A, [x4]

≥
A, [x6]

≥
A, [x9]

≥
A, [x10]

≥
A, [x15]

≥
A, we have R≥A(Dr+1) = [x2]

≥
A ∪ [x3]

≥
A ∪ [x4]

≥
A ∪ [x6]

≥
A ∪

[x9]
≥
A, [x10]

≥
A ∪ [x15]

≥
A, R≥A(Dr+1)

′
= U

′
.

4. Non-incremental and incremental algorithms for computing approxi-
mations in an IvOIS with the dynamic object set

In this section, we design the non-incremental and incremental algorithms on the variation of the object
set in an IvOIS. Sometimes we call the non-incremental algorithm as statical algorithm or traditional
algorithm.
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4.1. The Non-incremental Algorithm for Computing Approximations in an IvOIS

The given Algorithm 1 is a statical(non-incremental) algorithm for computing the lower and upper ap-
proximations in an IvOIS when the object set in the information system is changed. First, we compute
all the decision classes U/d = {D1, D2, · · · , Dr}. Later, initialize all lower and upper approximations
as empty set for every Di, i = 1, · · · , r, The step 4-5 compute all the A−dominating sets. Step 6-15
compute the lower and upper approximations in IvOIS based on the Dentition 2.2. At last, return the
results. The computational complexity of Algorithm 1, as shown in Table 3.

Algorithm 1: An non-incremental algorithm for updating approximations in an IvOIS
Input : An decision interval-valued ordered information system I≥ = (U,AT ∪ {d}, V, f).
Output : The lower and upper approximations of IvOIS

1 begin
compute: U/d = {D1, D2, · · · , Dr}; // the r is the cardinal number of the U/d ;

2 for i = 1 : r do
let : R≥A(Di)← ∅, R≥A(Di)← ∅ // initialize all approximations as empty set ;

3 end
4 for each x ∈ U do

compute: [x]≥A; // compute all A−dominating sets with respect to all x in U classes ;
5 end
6 for i = 1, · · · , r do
7 for each x ∈ U do
8 if [x]≥A ⊆ Di then
9 R≥A(Di) = R≥A(Di) ∪ {x} // compute the lower approximation of Di by definition ;

10 end
11 if x ∈ Di then
12 R≥A(Di) = R≥A(Di) ∪ [x]≥A // compute the upper approximation of Di by definition. ;
13 end
14 end
15 end

return : R≥A(Di), R≥A(Di).
16 end

Table 3. The computational complexity of Algorithm 1

Step 1 O(|U |2)

Steps 2-3 O(
∑r

i=1 |Di|(|U |+ |Di|))
Steps 4-5 O(|U |2)

Steps 6-15 O(
∑r

i=1 |U |(|U ||Di|+ |Di|))
Total O(2|U |2 +

∑r
i=1 |Di|(|U |2 + |U |))

4.2. The Incremental Algorithm for Updating Approximations in an IvOIS when Delet-
ing an Object from the Universe

The given Algorithm 2 is an incremental algorithm for updating the lower and upper approximations in
an IvOIS when the object set be deleted from the universe U in the interval-valued ordered informa-
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tion system. Step 3-16 update the lower and upper approximations of the decision classed Di, when
the deleted object x− belongs to the decision classes. Among them, the step 4-8 update the lower ap-
proximations of Di by Proposition 3.1, step 9-16 update the upper approximations of Di by Proposition
3.1. Step 18-32 update the approximations of the decision classes Di, where the deleted object x− does
not belong to the decision classes Di. Among them, the step 18-25 compute the lower approximations
of Di by Proposition 3.2, step 26-32 compute the upper approximations of Di by Proposition 3.2. At
last, return the result of approximations after deleting the object x−. The computational complexity of
Algorithm 2, as shown in Table 4. The flow-process diagram of Algorithm 2 as shown in Fig. 1.

Table 4. The computational complexity of Algorithm 2

Step 4-9 O(|R≥A(Di)|)
Steps 10-16 O(|Di|2 × |U |)
Steps 18-25 O(|Di| × (|U |+ |U | × |Di|))
Steps 26-30 O(|R≥A(Di)|)
Total O(

∑r
i=1 |Di|(|R≥A(Di)|+ 2|Di|2 × |U |+ |R≥A(Di)|))
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Fig. 1. The flow-process diagram of Algorithm 2.
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Algorithm 2: An incremental algorithm for updating approximations in an IvOIS when deleting
an object from the universe

Input :
(1)The original interval-valued ordered information system at time t : I≥ = (U,AT ∩ {d}, V, f), where A ⊆ AT ;
(2)The A−dominating sets [x]≥A at time t for each x ∈ U where A ⊆ AT and the original decision equivalence classes
U/d = {D1, D2, · · · , Dr}, the r is the number of the decision classes ;

(3)The original lower and upper approximations at time t : R≥A(Di), R≥A(Di), i = 1, · · · , r;
(4)The object will be deleted from U : x−.
Output : The lower and upper approximations in an IvOIS at time t+ 1 after deletion of x− from U : R≥A(Di)

′
,

R≥A(Di)
′

1 . begin
2 for i = 1, · · · , r do
3 if x− ∈ Di then
4 if x− ∈ R≥A(Di) then
5 R≥A(Di)

′
= R≥A(Di)− {x−}; // update the lower approximation by Proposition 3.1;

6 else
7 R≥A(Di)

′
= R≥A(Di) ;

8 end

9 R≥A(Di)
′
= R≥A(Di)− [x−]≥A; //update the upper approximation by Proposition 3.1;

10 for each x ∈ [x−]≥A do
11 for each x

′
∈ Di − {x−} do

12 if x ∈ [x
′
]≥A then

13 R≥A(Di)
′
= R≥A(Di)

′
∪ {x};

14 end
15 end
16 end
17 else

let : R≥A(Di)
′
= R≥A(Di); //update the lower approximation by Proposition 3.2;

18 for each x ∈ (Di)−R≥A(Di) do
19 if x− ∈ [x]≥A then
20 [x]≥A = [x]≥A − {x

−};
21 end
22 if [x]≥A ⊆ Di then
23 R≥A(Di)

′
= R≥A(Di)

′
∪ {x};

24 end
25 end

26 if x− ∈ R≥A(Di) then
27 R≥A(Di)

′
= R≥A(Di)− {x−}; //update the upper approximation by Proposition 3.2;

28 else
29 R≥A(Di)

′
= R≥A(Di);

30 end
31 end
32 end

return : R≥A(Di)
′
, R≥A(Di)

′
.

33 end
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4.3. The Incremental Algorithm for Updating Approximations in an IvOIS when Insert-
ing an Object into the Universe

The given Algorithm 3 is an incremental algorithm for updating the lower and upper approximations in
an IvOIS when the object set is inserted into the universe U in the information system. First, we should
compute the A−dominating set with respect to x+ is [x+]≥A. Step 2-22 update the approximations of
decision classesDi, when the inserted object x+ will belong to the decision classesDi. Step 5-9 compute
the lower approximations of Di by Proposition 3.3. Step 10 compute the upper approximations of Di

by Proposition 3.3. Step 11-22 update the approximations of the decision classes Di, when the inserted
object x+ will not belong to the decision classesDi. Step 11-16 compute the lower approximations ofDi

by Proposition 3.4. Step 17-22 update the approximations of Di by Proposition 3.4. Step 23-31 compute
the approximation of new decision class Dr+1, if the inserted object does not existed decision classes.
Step 23-29 compute the lower approximation of Dr+1 by Proposition 3.5. Step 30 compute the upper
approximation of Dr+1 by Proposition 3.5. At last, return the approximations after inserting object
x+. The computational complexity of Algorithm 3, as shown in Table 5. The flow-process diagram of
Algorithm 3 as shown in Fig. 2.
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Fig. 2. The flow-process diagram of Algorithm 3.

Table 5. The computational complexity of Algorithm 3

Step 1 O(|U |)
Steps 5-10 O(|Di| × |U |)
Steps 12-16 O(|U | × |R≥

A(Di)|)
Steps 17-22 O(|Di| × |U |)
Steps 23-30 |U |2

Total O(|U |+
∑r

i=1 |Di||U |(2|Di|+ |R≥
A(Di)|) + |U |2)
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Algorithm 3: An incremental algorithm for updating approximations in an IvOIS when inserting
an object into the universe U .

Input :
(1)The original interval-valued ordered information system at time t : I≥ = (U,AT ∪ {d}, V, f);
(2)The A−dominating sets [x]≥A at time t for each x ∈ U where A ⊆ AT and the original decision equivalence classes
U/d = {D1, D2, · · · , Dr}, the r is the number of the decision classes ;

(3)The original lower and upper approximations at time t : R≥A(Di), R≥A(Di), i = 1, · · · , r;
(4)The object will be inserted into U : x+.
Output : The lower and upper approximations in an IvOIS at time t+ 1 after the insertion of x+ into U : R≥A(Di)

′
,

R≥A(Di)
′
.

1 begin
compute: the A−dominating set with respect to x+: [x]≥A;

2 for i = 1, · · · , r do
3 if x+ ∈ Di then
4 Di = Di ∪ {x+};
5 if [x+]≥A ⊆ Di then
6 R≥A(Di)

′
= R≥A(Di) ∪ {x+}; // update the lower approximation by Proposition 3.3;

7 else
8 R≥A(Di)

′
= R≥A(Di);

9 end

10 R≥A(Di)
′
= R≥A(Di) ∪ [x+]≥A; // update the upper approximation by Proposition 3.3;

11 else
let : R≥A(Di)

′
= R≥A(Di);

12 for each x ∈ R≥A(Di)
′

do
13 if x+ ∈ [x]≥A then
14 R≥A(Di)

′
= R≥A(Di)

′
− {x}; // update the lower approximation by Proposition 3.4;

15 end
16 end
17 for each x ∈ Di do
18 if x+ ∈ [x]≥A then
19 R≥A(Di)

′
= R≥A(Di)

′
∪ {x+}; // update the upper approximation by Proposition 3.4;

20 end
21 end
22 end
23 if ∀x ∈ U, f(x, d) 6= f(x+, d) then

generate: a new decision class Dr+1;
24 if [x+]≥A ⊆ Dr+1 then
25 R≥A(Dr+1) = {x+}; // update the lower approximation by Proposition 3.5;
26 else
27 R≥A(Dr+1) = ∅;
28 end
29 end

30 R≥A(Dr+1) = ∪{[x]≥A|x
+ ∈ [x]≥A, x ∈ U}; // update the upper approximation by Proposition 3.5;

31 end

return : R≥A(Di)
′
, R≥A(Di)

′
, R≥A(Dr+1), R≥A(Dr+1)

32 end
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5. Case study

In this section, in order to evaluate the performance of the proposed incremental algorithms, we con-
duct a series of experiments to compare the computational time between the non-incremental(statical)
algorithm and incremental algorithms for computing approximations based on standard data sets where
from the UC Irvine Machine Learning Database Repository(http://archive.ics.uci.edu/ml/datasets.html),
named ”Energy efficiency”, ”Airfoil Self-Noise”, ”Wine Quality-red”, ”Wine Quality-white”, ”Letter
Recognition”, ”Spoken Arabic Digit” and the characteristics of the data sets are summarized in Table 7.
This experimental computing program is running on a personal computer with following hardware and
software as Table 6.

Table 6. Experiment platform.

Name Model Parameters

CPU Intel i3− 370 2.40GHz

Memory SamsungDDR3 2GB, 1067MHz

HardDisk West Data 500GB

System Windows7 32bit

P latform V C + + 6.0

Note that, the attributes characteristics of the six datasets in Table 7 consist of integer or real number.
We construct the interval-valued information tables by utilizing multiply error precision α, namely, the
attribute value of ∀xi ∈ U , at ∀aj ∈ AT is Vxi,aj , we can let it express as [(1−α)×Vxi,aj , (1+α)×Vxi,aj ]
then we can utilize the interval-valued information tables in our experiments. In different engineering
areas may use different error precision. In this paper, we set the error precision α = 0.05.

Table 7. Experiment data sets.

No. Data set name Abbreviation Objects Attributes Decision classes

1 Energy efficiency EE 768 8 3

2 Airfoil Self −Noise AS 1503 6 5

3 Wine Quality − red WQ-r 1599 11 6

4 Wine Quality − white WQ-w 4898 11 7

5 Letter Recognition LR 8084 16 14

6 Spoken ArabicDigit SAD 8800 13 3

Before the experiment let the original data in each dataset are equally divided into twenty parts. We
let the original data set as the training data at time t, and randomly choose serval parts(from 5% to 50%)
as the immigrating objects which will be deleted from the system at time t+ 1. Another experiment, we
choose the 80% as the training data set at time t, and the remaining 20% as the test data set which will
be inserted into the system at t+ 1. Each test choose a part enter into the system(from 10% to 100% of
the test data) at time t+ 1.



J. Yu, W. Xu / Incremental Computing Approximations with the Dynamic Object Set in IvOIS 391

Generally, we perform the experimental analysis with applying the non-incremental algorithm along
with our proposed incremental algorithms when the objects inserting into or deleting from the informa-
tion system, respectively. The size of updated objects which inserting into or deleting from the universe
should be different, namely, updated ratio, that is, the ration of the numbers of updating data and original
data. Here, in order to analyze the influence of the updated ratio on the efficiency of algorithms, we com-
pare the computational time of the non-incremental and incremental algorithms with different updated
ratios. It’s mean for each data sets, we conduct the comparison experiments with same original data size,
but different updated ratios included deleting ratios and inserting ratios.

5.1. A Comparison of Computational Efficiency Between Non-incremental and Incre-
mental Algorithm with the Deletion of the Object Set

To compare the efficiency of non-incremental algorithm (Algorithm 1) and incremental algorithm (Algo-
rithm 2) for computing lower and upper approximations when deleting the objects from the data sets. We
compute the time of the two algorithms on the given datasets in Table 7 with the different updating ratio
(from 10% to 100%), but same sizes of the original data, we show the experimental results in Table 8.
And more detailed changing trendline of each of two algorithms with the increasing updating ratio of
data sets are presented in Fig. 3.

Table 8. A comparison of non-incremental and incremental algorithm versus different updating rates when deleting objects.

Del.(%)
EE AS WQ-r WQ-w LR SAD

Non. Incre. Non. Incre. Non. Incre. Non. Incre. Non. Incre. Non. Incre.

5% 0.092 0.001 0.423 0.001 1.077 0.030 10.11 0.045 60.900 0.124 25.522 0.094
10% 0.094 0.001 0.381 0.001 0.981 0.048 9.081 0.138 49.608 0.564 22.870 0.312

15% 0.062 0.001 0.375 0.048 0.888 0.096 8.097 0.234 44.116 1.372 20.436 0.656

20% 0.064 0.020 0.327 0.045 0.795 0.093 7.161 0.468 39.060 2.436 18.096 1.124

25% 0.062 0.024 0.279 0.045 0.654 0.093 6.318 0.702 34.380 3.868 15.912 1.778

30% 0.056 0.028 0.234 0.048 0.624 0.141 5.520 0.984 29.952 4.692 13.822 2.558

35% 0.052 0.026 0.195 0.048 0.516 0.141 4.728 1.404 25.832 5.488 11.950 3.494

40% 0.046 0.028 0.189 0.093 0.420 0.186 4.023 1.827 22.028 7.336 10.170 4.556

45% 0.036 0.030 0.141 0.096 0.375 0.234 3.417 2.092 18.468 8.352 8.5480 5.740

50% 0.032 0.030 0.141 0.093 0.327 0.282 2.808 2.408 15.440 11.228 7.582 6.852

In each sub-figure(a)-(f) of Fig. 3, the x−coordinate pertains to the ratio of the numbers of the
deleting data and original data, while the y−coordinate concerns the computational time. According
to the experimental results in Table 8 and Fig. 3, we can see, for the non-incremental algorithm, the
computational time for computing approximations with deletion of the objects from the universe U is
decreasing monotonically along with the increase of ratios, the size of the universe U decrease gradu-
ally. On the contrary, for the incremental algorithm, we can see that the computational efficiency for
computing approximations is changing smoothly along with the increase of deleting ratios.
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Fig. 3. A comparison of non-incremental (Algorithm 1) and incremental (Algorithm 2) algorithms
versus different updating rates when deleting objects.
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It’s easy to get the incremental algorithm always performs faster than the non-incremental algorithm
for computing approximations. It must be note that there is a threshold depending on the data set.
Different data sets have different thresholds. Once the delete ratio over the threshold, namely, the deleted
data set is bigger than the remaining data set maybe the incremental algorithm is slower than the non-
incremental. So, the incremental algorithm is very efficiency especially when need to delete the data set
is far smaller than the original data set. Data set is larger when stronger regularity.

5.2. A Comparison of Computational Efficiency Between Non-incremental and Incre-
mental Algorithm with the Insertion of the Object Set

Similar to the experiment schemes for comparing the efficiencies between non-incremental and incre-
mental algorithms when deleting the objects from the universeU , we also adopt such schemes to compare
the performance of algorithms on the case of inserting the objects into the universe U . We compute the
two algorithms (Algorithm 1 and Algorithm 3) on the six UCI data sets in Table 7 with the changing of
updating ratios for each data sets. The experimental results are shown in Table 6. More detailed change
trend line of each two algorithms with the increasing ratio of data sets are given in Fig. 4.

.
Table 9. A comparison of non-incremental and incremental algorithm versus different updating rates when inserting objects.

Ins. (%)
EE AS WQ-r WQ-w LR SAD

Non. Incre. Non. Incre. Non. Incre. Non. Incre. Non. Incre. Non. Incre.

10% 0.090 0.001 0.327 0.001 0.795 0.001 7.536 0.030 41.060 0.060 19.032 0.032
20% 0.094 0.001 0.327 0.001 0.843 0.001 7.956 0.048 43.120 0.124 19.936 0.062
30% 0.092 0.001 0.327 0.001 0.891 0.001 8.283 0.048 45.180 0.248 20.904 0.092
40% 0.094 0.001 0.375 0.024 0.936 0.030 8.658 0.138 47.300 0.376 21.934 0.188
50% 0.092 0.003 0.375 0.045 0.984 0.048 9.174 0.138 49.172 0.624 22.900 0.280
60% 0.092 0.004 0.420 0.048 1.029 0.045 9.501 0.234 51.728 0.876 23.930 0.438
70% 0.094 0.004 0.420 0.045 1.029 0.048 9.873 0.234 54.040 1.188 24.960 0.560
80% 0.094 0.012 0.468 0.045 1.077 0.048 10.344 0.327 56.536 1.560 25.958 0.718
90% 0.094 0.012 0.468 0.048 1.125 0.054 10.764 0.375 58.720 2.000 27.176 0.936
100% 0.094 0.012 0.468 0.048 1.218 0.048 11.187 0.468 61.088 2.432 28.298 1.124

In each sub-figure(a)-(f) of Fig. 4, the x−coordinate pertains to the ratio of the numbers of the in-
serted objects and test data, while the y−coordinate concerns the computational time. According to the
experimental results in Table 9 and Fig. 4, we can see, for the non-incremental algorithm, the computa-
tional time for computing approximations with insertion of the objects into the universe U is increasing
monotonically along with the increase of ratios. On the contrary, for the incremental algorithm, we can
see that the computational efficiency for computing approximations is changing smoothly along with the
increase of inserting ratios. It’s easy to get the incremental algorithm always performs faster than the
non-incremental algorithm for computing approximations. So, the incremental algorithm is efficiency
when the objects insert into the universe, especially the original data set is an big data set and when the
changing data set relatively small is very efficiency.
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Fig. 4. A comparison of non-incremental (Algorithm 1) and incremental (Algorithm 3) algorithm
versus different updating rates when inserting objects.
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6. Conclusions

The incremental technique is an very effective approach to maintain knowledge in the dynamic environ-
ment. In this paper, we proposed incremental methods for updating lower and upper approximations in
an IvOIS when the information system is updated by inserting or deleting object set, respectively. And
two algorithms as for updating approximations when the information system is updated by inserting or
deleting object set. Experimental studies pertaining to six UCI data sets showed that the incremental
algorithms can improve the computational efficiency for updating approximations when the object in the
information system varies over time. In real-world application, an interval-valued information system
may be updated by changing granularity or attributes or all of the elements in the information system
will change as time goes by under the dynamic environment. In the future, the variation of attributes and
the domain of attributes values in an IvOIS or the granulations’ coarsening and refinement will also be
taken into consideration in terms of incremental updating approximations and knowledge discovery.
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